
International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

Arabic Computer Programming Education Tool

Mohamed Tahar Ben Othman
Computer Science Dept., College of Computer,

Qassim University, KSA
maathaman@qu.edu.sa; mtothman@gmail.com

ABSTRACT

In this paper, we present a programming tool, which is built to help students write their programs in

Arabic in a smart environment and execute them directly on the machine or displaying their execution

through a simulation. The simulator is used to help students understand the machine’s architecture and

how programs are internally executed. Over the simulator a small kernel is added to manage a set of

programs concurrently executed. This kernel gives an idea to the students of how the operating system

is scheduling different programs at different types of priorities. This tool is a part of a project that

aims to have an entire environment in Arabic used for teaching several programming languages

related courses.

Keywords: Arabic programming language, compiler, smart editor, simulator.

1. INTRODUCTION

Taking courses in one's native language is necessary to develop a sound understanding of

sciences. At Arab Universities, computer sciences were formerly taught in Arabic, but the

tools’ operative instructions were generally presented in foreign languages. The aim of this

project is to fill the gap between courses and tools. This paper conveys the general idea

behind the project; it describes what has been done and hints to what is remaining. As will be

shown in this paper, the goal of this project is not only to build a tool that supports an Arabic

programming language, but also an environment which will be used to guide the students

through writing programs at the highest possible level until the execution on the machine or

an attached simulator. The latter helps the students understand the machine’s architecture

while executing a program as well as the role of the operating system while scheduling

programs. To the best of our knowledge, and besides the fact that the tool is dedicated to

Arabic speaking students, there is no tool that guides the students from writing programs to

execution while helping them to understand what is given in different programming related

courses. The main works found use an interpreter (Galperina, 2013; Al-A'ali, Mansoor and

Hamid, 1995; Elsheikh, 2014). (Amin, 2001; Essam, 1996) are implementing an object

oriented Arabic language. A Master Thesis (Al-Ethawie, 1997) is a design of a logic Arabic

language.

The rest of the paper is organized as follows: the DHAD project’s architecture is presented in

Section 2. The compiler is explained in Section 3. Section 4 presents the editor and its smart

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

26

contribution. The different program execution types are provided in Section 5. The

conclusion and future works are discussed in Section 6.

2. ARCHITECTURE OF DHAD PROJECT

As shown in Figure 1 the DHAD project is being built in different phases and consists of

several components. The compiler is the heart of the tool. It translates the DHAD programs to

machine, C, and Assembly languages. The Editor is smart and helps users to write their

programs. The learning component is an interactive user interface that guides the user in

learning the DHAD programming through different complexity levels. The Exams

component can be used by the Instructor to build exams for his students.

Fig 1: DHAD tool’s architecture

3. COMPILER

Prior to build the compiler, the DHAD grammar should be determined. This grammar is

chosen as a combination among several high level programming languages’ grammars (C,

C++ and Pascal). The easiest (the highest level) syntax for instructions and declarations is

used for DHAD programming language’s grammar. This is the first step toward a user-

oriented product.

Figure 2 depicts the compiler’s structure. The DHAD programming language compiler has a

large number of functionalities that make it an efficient tool for programming studies. The

input of the compiler has to be a file with the extension "apl" — Arabic Programming

Language — and depending on the compiler options the output can be the filename.c

containing the translation of the program written in Arabic into C and/or filename.asm

containing the translation of the program into assembly language.

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

27

Fig 2: Compiler’s structure

3.1 DHAD Language Syntax

A- Keywords:

Table 1 gives some default keywords that are chosen for the DHAD programming language:

Table 1 : DHAD Language Keywords

 ادخلحر ادخلح أدخل ادخال اخرى اختبر

 أعد اطبع اس ارجع إذا ادخلحرف

 جتا جا ثابت بداية أو الى

 حقيقي حفظ حرف حتى حالة جذر

 طالما صحيح سلسلة سجل رئيسي دالة

 عرض عالج ظتا ظا طول طباعة

 لا قف قارن فارغ عرضسلسلة عرضحرف

 ملف مطلق مصفوة مادام لو لصق

 والا نهاية نفذ نسخ من

In the first phase the syntax is taken from three different programming languages (C, C++

and Pascal) and modified, to be easily used and understood later. The following are some

examples of instruction syntaxes:

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

28

B- For-loop instruction syntax
 ؛<الأمر> عالج< قيمة> خطوة< الشرط> حتى< تعبير< = >متغير> من

The statement < الأمر> can be either a simple or compound statement. To assist the use of this

instruction at a higher level before even studying the variable we also provide another variant

of this instruction where there is no need to use the index variable.

 ؛<أمر> عالج< قيمة> خطوةيمة< > ق حتى< قيمة> من

The compiler adds a variable for this for-loop instruction. All precautions are taken to ensure

that this variable is not and will never be used by the user and cannot be reused by the

compiler in case of nested loops.

C- While-loop instruction syntax

Even if the user can always change keyword lexemes, in some cases, the same instruction is

provided using different symbols. Among these cases, the while-loop instruction can be used

in two ways:

 ؛<الأمر> عالج< الشرط> طالما

 ؛<الأمر> عالج< الشرط> مادام

D- Input-Output instruction syntax
 ؛<متغيرصحيح > أدخل

 ؛<متغير< >نوع"رسالة"، > أعرض

This is the short format of the input and output instructions. They can be used with more

strings and variables. As the library is not built yet, the DHAD programming language user

does not have to include header files at this level. The compiler adds all needed header files.

This is another way to increase the language level.

3.2 The Compiler Modules

The compiler consists of several modules described in Figure 2. The lexical analyser is the

interface between the user program and the rest of the compiler components. This module’s

main task is to read a stream of characters from the input program file and to construct a

stream of words. A token is assigned to each word and is sent to the next module: the parser.

The parser is built based on the grammar of the language. It is the element that verifies if the

stream of tokens returned by the lexical analyser respects the grammar rules. By combining

the grammar rules and the translation rules, the parser calls upon the third main module

which translates to the target language if there is no syntax error in the source program.

4. THE EDITOR

Figure 3 shows the interface of the editor. In addition to standard functionalities the editor

introduces new ones to be more user-friendly. Among these functionalities are:

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

29

1. Help menu: describes all DHAD programming language instructions' syntaxes with

examples that can be copied, compiled and executed.

2. File menu: contains the standard file management functions.

3. Compile menu: this menu contains several options: translation to C, translation to

Assembly language and translation to machine language and execute. The interaction

between the editor and the compiler is discussed later in this paper.

4. Keywords customization: in Arabic there is no standard technical keywords yet; even

if there are some works done in this direction, we included this functionality to give

the user the ability to change any keyword in the DHAD programming language. At

any time, the user can return back to the default keywords used in the DHAD

language. This is another functionality that allows more flexibility in using the tool.

Figure 6 gives way to change an existing keyword

Fig 3: Editor interface

Among the functionalities that are added to the smart editor is the possibility to provide user

with a list of the identifiers (names of variables and functions) used in the current program.

This will give the user quick access to these identifiers throughout the program. Figure 4 is a

screenshot of the identifiers’ window. The user can also use his preferred colours for the

different parts of the program. Figure 5 shows the different colours used.

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

30

Figure 4: Identifiers quick access

Figure 5: Colors specification window

Figure 6: Keywords customization

The program can also be given a name and then inserted in the program each time it is

duplicated with small modifications. This will not oblige the user to retype or look for a code

to copy and paste.

5. PROGRAM EXECUTION

Program in Figure 7 explains the possible ways to run the program. The program’s execution

has different choices:

1. The direct execution: in which the program is translated to the machine’s language

and then executed on the machine's processor. Figure 8 presents the result of the

direct execution of a program.

2. The cross-language translation: the DHAD's program is translated to C and/or

Assembly languages. Figure 9 shows the translation of a program written in DHAD

language to both C and Assembly languages. The execution can be done from any

language after translating it to the machine’s language as shown in Figure 10.

3. The execution of the translated program on the simulator. The execution of a program

using the simulator is presented in Figure 11.

We chose to design and implement the assembler that translates a program written in

assembly language to the machine’s language on a PC rather than use a third-party assembler

like MASM and ASM due to three main reasons:

1. This assembler can be used separately, and then, all messages like errors, warnings,

and help are written in Arabic.

2. When translating the DHAD programming language program into assembly language,

this assembler can be used to translate to machine code and then the program can be

executed.

3. This assembler’s code is incorporated into the back-end compiler to directly perform

the translation from the source language to the target language.

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

31

Figure 7: Run menu

Figure 8: Direct execution

Figure 9: Translation to C and Assembly

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

32

Figure 10: Execution from any program

The execution of the program can be on the machine or using the simulator as shown in

Figure 11.

Figure 11: Execution using the simulator

The simulator helps the students understand the ways in which the machine executes a

program. The user can control the execution step by step. Also a kernel is added to the

simulator to manage the multiprogramming. Some settings such as the scheduling type and

the speed of execution are specified by the user. All windows can be displayed or hidden

separately. Figure 12 shows the process’ transition states.

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

33

As soon as a new program is submitted

it will be first placed on “hold” and then

“ready state”. Depending on the

scheduling type, the process control

block (PCB) is put in its place in the list

of processes. Once the current running

process finishes its quota (or its

execution) the CPU control is passed to

the first process in the list. If the current

running process has an input/output

operation the process should be

suspended, entering a waiting state. For

simplicity, this state is omitted in the

simulator and the time of input/output is

reduced to a normal operation time.

6. CONCLUSION AND FUTURE WORK

The aim of this project is to provide to the Arabic speaking students a way to self-learn

different programming related courses. At this level, the tool, even if it is not completely

achieved, can be used to provide an idea of the DHAD, Assembly and C programming

languages. Also, the tool presents an overview of the machine’s architecture and how a

program is executed over this architecture. The kernel explains how multiprogramming is

managed. Future works will concentrate on how the students can be asked to modify the code

to have their own grammar rules for the compiler and their own control modules in the

operating system. The library and targeting exe file translation instead of com file will also be

a focus.

7. ACKNOWLEDGMENT

The author would like to express his gratitude to the Deanship of Scientific Research’s

support given under the project ID 3316. Also he would like to thank Abdulrahman H.

Almotairi, Khaled N. Alotibi, Abdulqader Z. Almotairi, Saad N. Almotairi, Dakeel Allah Eid.

A. Alolweet, Ali Abdullah S. Alolweet, Thamer Ali M. Alsayq, Suliman Abdullah

Alsuhibany, Fahad Alnafesah, Ibraheem Alawad, Bader Massad Almotairi, Fahad Abdullah

Alharbi, Mohamed Nayer Almotairi, Fares Sweleam Alrashidi, Mesheal Kalaf A. Alharbi for

their work in the their final year projects to make this dream come true.

8. REFERENCES

Galperina, Marina, “Arabic Programming Language at Eyebeam: قلب Opens The World”, January 24,

2013

http://animalnewyork.com/2013/arabic-programming-language-at-eyebeam-

%D9%82%D9%84%D8%A8-opens-the-world, Ramsey Nasser. /

Al-A'ali, Mansoor and Hamid, Mohammed. “Design of an Arabic programming language

(ARABLAN), , Computer Languages, Volume 21 Issue 3-4, October, 1995, Pages 191-201,

Pergamon Press, Inc. Tarrytown, NY, USA

Complete

state I\O

New Process

Running

state

Submit

state

Ready

state

Hold Waiting

state
I/O Completion

dispatcher

Figure 12: Process states

http://animalnewyork.com/2013/arabic-programming-language-at-eyebeam-%D9%82%D9%84%D8%A8-opens-the-world,%20Ramsey%20Nasser.%20/
http://animalnewyork.com/2013/arabic-programming-language-at-eyebeam-%D9%82%D9%84%D8%A8-opens-the-world,%20Ramsey%20Nasser.%20/

International Journal on Islamic Applications in Computer Science And Technology, Vol. 4, Issue 1, March 2016, 25-34

34

Elsheikh, Mustafa “ARLOGO: The First Arabic Programming Language Project” (last retrieved

2014) http://arlogo.sourceforge.net

Amin, M.R., "The Arabic object-oriented programming language Al-Risalh," in Computer Systems

and Applications, ACS/IEEE International Conference on. 2001, vol., no., pp.424-427, 2001

doi: 10.1109/AICCSA.2001.934031

Essam M. A., "Design of an Arabic object-oriented programming language and a help system for

pedagogical purposes", 1996 Doctoral Dissertation, Illinois Institute of Technology Chicago, IL,

USA.

Al-Ethawie, Jamal M. K. "Development of an Arabic programming language based on logic", Msc

thesis, Al-Nahrain University, 1997.

http://arlogo.sourceforge.net/

